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where the eigenvector I C~)) is a solution of the 
original eigenvalue equation [equation (9)], while 
I CI2)) is a solution of the equation 

M t [  i it i C(2)) = 2k3, l C(2)) (A3) 

or equivalently 

(CI2)IM = 2k7"*(C12)1 (A4) 

where M* denotes the adjoint matrix of M and 
,)/it* : ,)/i. 

Utilizing (A2), we obtain 

c '=  (C 12)1 o/(CI2)I CII )) (A5) 

where (C12)1o is the 0 component of the Bloch-wave 
eigenvector (C~]. 

By substituting such generalized excitation 
coefficients into the intensity expression [equation 
(7)] and neglecting the coupling terms, ij, the contrast 
profiles along sections A and B in Fig. 3 for GaSb 
have been calculated. The results are shown in Fig. 5. 
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Abstract 

Structural relations of the two decagonal phases in 
A1-Mn and A1-Fe alloys with the Penrose pattern are 
discussed based on structure-factor calculations and 
symmetry considerations. The electron diffraction 
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patterns are explained by models with layer structures 
which consist of the stacking of four kinds of layers 
constructing the Penrose pattern. A1-Mn has six 
layers within a period along the tenfold axis while 
AI-Fe includes eight. A projection along the axis 
shows the Penrose pattern in both models. The sym- 
metries of A1-Mn and A1-Fe are expressed by the 
five-dimensional superspace groups PlOs/mmc and 
PlOsmc. These give the observed systematic extinc- 
tion rules. In A1-Fe, an additional extinction rule due 
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to the symmetry  element  of  the superspace groupoid  
exists. 

1. Introduct ion  

In the previous paper  of  this series ( I sh ihara  & 
Yamamoto,  1988, hereafter  referred to as paper  I), 
the theoretical insight of  the generalized Penrose pat- 
tern is discussed. Similar  considerat ions are under-  
taken in this paper  to obtain structure models  for 
the decagonal  phases of  AI -Mn and AI-Fe  alloys, 
which have a tenfold axis and a per iod along 
the axis (Bendersky, 1985; Cha t topadhyay ,  Lele, 
Ranganathen ,  Subbana  & Thangaraj ,  1985; Fung, 
Yang, Zhou,  Zhao,  Zhan  & Shen, 1986). The diffrac- 
tion patterns of  these alloys along the tenfold axis 
are s imilar  to that of  the Penrose pattern (Fig. 1). 
This implies that their structure consists of  several 
layers (Ho, 1986; Muller ,  1987) and the project ion 
along the axis gives the Penrose pattern. The Penrose 
pattern is divided into four kinds of subpatterns,  
which come from the four pentagonal  atoms in the 
four-dimensional  descript ion of  the Penrose pattern 
described in paper  I. Therefore we can construct 
such a model  by consider ing layers with these pat- 
terns. However, we have to consider  another  possi- 
bility because there exists a general ized Penrose 
pattern with a tenfold axis and this also has a simi- 
lar diffraction pattern, as stated in paper  I. An- 
other point  to note is that the decagonal  phases 
show systematic extinction rules, in contrast to 
the icosahedral  AI -Mn quasicrystal.  These should 
be expla ined by symmetry  operations.  In order to 
examine  these extinction rules and to construct a 
model  giving diffraction intensities s imilar  to those 
of the decagonal  phases,  we extend the symmetry  
considerat ions described in paper  I to the cases of  
decagonal  A I - M n  and AI-Fe.  On the basis of  sym- 
metry considerat ions and structure-factor calcula- 
tions, s imple vertex models  for these quasicrystals  are 
proposed and the relations between the two structures 

and with the Penrose pattern are discussed. The sym- 
metries of  these quasicrystals are specified by five- 
d imens iona l  superspace groups (Janssen,  1986) 
which expla in  the systematic extinction rules 
observed in the diffraction pattern. In A1-Fe an addi- 
t ional extinction rule exists. This is expla ined by the 
element  of  the hull  of  the groupoid.  Such an extinction 
rule is often observed in polytypes (Verma & Krishna,  
1966). We point  out that the two models  can be 
regarded as polytypes in the quasicrystal  and we 
discuss their  interrelat ion and symmetry based on 
groupoid theory (Sadanaga  & Ohsumi,  1979). In 
order to consider  realistic models  the density of the 
structure should  also be taken into account. Since the 
present paper  considers only vertex models  an exact 
compar ison  of  the density with exper imental  values 
is meaningless .  Therefore we compare the number  
densities of  the proposed models  with that of  the 
three-dimensional  Penrose pattern (Elser, 1986). The 
models  give much  smal ler  values than that of  the 
latter. It is shown how we can modify  the models  to 
obtain a denser  structure leaving the extinction rules 
and the superspace group unchanged.  Finally,  we 
consider  other  structure models  which are related to 
the general ized Penrose pattern with tenfold axis. 

2. Ex t inc t ion  rules  and superspace  groups  

The decagonal  phases  have systematic extinction 
rules to be expla ined  by the symmetry  of  the structure. 
Fig. 2 shows electron diffraction patterns of  AI -Mn 
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Fig. 1. (a) The electron diffraction pattern of AI-Fe along the 
tenfold axis (Fung etal., 1986). (b) The calculated diffraction 
intensity of the Penrose pattern. The radius of the circle is 
proportional to the structure facto.'. An is•tropic temperature 
factor of 1 A 2 and the atomic scattering factor of Mn are used. 

4 Five arrows show p* (i = 1, 2, 3, 4) and - ~ - t  P*- 

(a) (b) 

Fig. 2. The electron diffraction patterns of AI-Mn (upper) and 
AI-Fe (lower) including the tenfold axis along the horizontal 
line (Fung etal., 1986). (a) and (b) are the sections through 
D-D and P-P, respectively, in Fig. l(a). p* is taken along the 
horizontal line. 
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and A1-Fe alloys by Fung etal. (1986) which are 
sections including the tenfold axis (see Fig. la ) .  In 
order to describe the extinction rules we take a 
decagonal coordinate system. Four vectors p* ( i =  
1, 2, 3, 4) are necessary to assign the reflections on 
planes normal to the tenfold axis (Fig. l b) and a 
vector p* is parallel to it. (This corresponds to the 
four-dimensional description of the Penrose pattern.) 
The five vectors are regarded as the projection of the 
unit vectors in the five-dimensional reciprocal lattice 
and the diffraction spots are regarded as the projec- 
tion of the five-dimensional reciprocal-lattice points 
onto the three-dimensional space. As with the Penrose 
pattern, we introduce the unit vectors of the decagonal 
system d* (i = 1, 2 , . . . ,  5) defined by d* = ~ j / ~ , ~ a j ,  
where ai (i = 1, 2 , . . . ,  5) are the orthogonal unit vec- 
tors with unit length, three of which span the external 
space and the remaining two the internal space. We 
take a~, a2, as for the basic vectors of the external 
space and a3, a4 for those of the internal one. The 
matrix /~/-~ is defined by 

C S 1 C 2 S 2 0 / 

C 2 s 2 C 4 S 4 0 

(a*/x/5) c3 s3 cl sl 0 , 

/0  4 s4 o j 
0 0 0 ~/5c*/a* 

(1) 

wherecj = cos (2,rrj/5),sj=sin (2~rj/5)(j= 1, 2 , . . . ,  4) 
and a* and c* are the reciprocal-lattice constants. 
The unit vectors d~ reciprocal to d* are given by 
d~ = 5-'.~ M0a j. M is written as 

c2-1  s2 c4-1 s4 00 

(2a/x/5) Ca- 1 s3 cl - 1 sl 

c4-1  s4 Ca - 1 s3 

o o o o 45c/2a/  

(2) 

where a = l / a * ,  c = l / c * .  The vectors p* ( i =  
1, 2 , . . .  5) are regarded as the external components 

' . ~ 2 '*--1 
of d*, so that these are gwen by pi =Y4=1 M 0 aj 
( i - 4 )  and ps*=c*as. The internal components q* 
are Y~=3 M/~laJ for l <-- 4 and zero for i = 5. Since the 
structure has a period along the d5* axis, the value of 
c* is easily determined from the diffraction pattern. 
On the other hand, a* is not uniquely determined 
because if unit vectors with some a* are available to 
index all the reflections in the plane other unit vectors 
with ra* are also available, where r is the golden 
mean (1+~/5)/2.  This comes from the fact that we 
can take an infinite number of descriptions which are 
mutually equivalent. This will be discussed in a sepa- 
rate paper [for the icosahedral quasicrystal see 

Yamamoto & Hiraga (1988)]. For convenience we 
select a* so that the diffraction vector h is expressed 
by an integral linear combination of d* ( i -  

5 
1, 2 , . . . ,  5) as h =Y~j=o hjj* and the strongest reflec- 
tion on the hlh2h3h40 plane is assigned as 13420. The 
vectors p* (i<-4) are indicated in Fig. l (b) .  In this 
setting, c is about 6a/x/5 for A1-Mn and 8a/x/5 for 
A1-Fe. The lattice constant a of A1-Mn is nearly 
equal to that of the icosahedral AI-Mn, ao, which is 
about 4-6 A. [In fact we have a = 4.55 and c = 12.44 
in A1-Mn from the X-ray powder pattern (Takeuchi 
& Kimura, 1986).] 

In both cases, reflections with h5 odd seem to be 
absent on the plane normal to p* (i<-4) (Fig. 2b), 
while these reflections appear in Fig. 2(a),  which is 
a plane normal to (b). This implies the existence of 
a tenfold hyperscrew axis and hyperglide plane nor- 
mal to the unit vectors p* (i = 1, 2, 3, 4). In addition 
another extinction rule appears in both (a) and (b) 
for A1-Fe: the reflections with h5 = +2, +6, +10 disap- 
pear. It is supposed that this is not due to any sym- 
metry operation. Another point to be considered is 
the point symmetry of the structures. AI-Mn has point 
symmetry lO/rnmm (Bendersky, 1985) while A1-Fe 
has lOmm (Fung et al., 1986). This means that A1-Mn 
has an inversion center but A1-Fe does not. The group 
lO/mmm is generated by a tenfold axis, a mirror 
plane including the axis and an inversion. The action 
of these generators on d* (i -- 1, 2 , . . . ,  5) is given by 
a 5 x 5 integral matrix F (R) :  

r(cT~)= t°i ° ° - '  _ _, Oo ' Ooo 1 Ooo , 

r ( ¢ ~ )  = 

0 0 0 1 0 

0 0 1 0 0 
0 1 0 0 0 

1 0 0 0 0 

0 0 0 0 1 

t1! ° ° ° ° ! / 1  0 0 
r ( l ) =  0 -1  0 . (3) 

0 0 - 1  

0 0 0 -  

The group lOmm is generated by the first two 
operators. The action on ai is given by a real matrix, 



710 PENROSE PATTERNS AND RELATED STRUCTURES. II 

r '= ~FKI-': 

-- Csi $2 __ __ C 2 

r ' ( c ; o ~ )  = 0 

/00 0 
0 

l 
1 0 0 0 

-1  0 0 

F'(o-~) = 0 1 0 

0 0 -1  

0 0 0 

0 
0 

C 4 

- -S  4 

0 

0 
0 

0 
0 

1 

°°/ 
$4 

C4 

0 

F ' ( I ) = F ( I ) .  (4) 

The reflection condition hs = 2n on the plane men- 
tioned above implies the existence of the hyperscrew 
axis {C~-o~1000~} and hyperglide plane {O'a[0000½}. 
(o-a = o-vC~-~. We employ decagonal coordinates for 
the translation vector.) Taking into account these and 
the point symmetries we have the superspace groups 
written as PlOs/mmc for A1-Mn and PlOsmc for 
A1-Fe, where the first letter gives the Bravais type, 
as in the usual symbol; P defiotes the primitive lattice. 
On the basis of these symmetry operators and the 
diffraction patterns we construct models for these 
quasicrystals. 

3. Structure models 

The diffraction patterns of AI-Mn [Fig. 1A of Ben- 
dersky (1985)] and A1-Fe (Fig. l a )  along the tenfold 
axis are similar to that of the Penrose pattern shown 
in Fig. l (b) .  Therefore we first consider a model 
related to the Penrose pattern. The lattice constants 
a and c imply that A1-Mn has six layers and A1-Fe 

eight layers within the period. We consider the four 
layers obtained from the four pentagonal 'atoms' 
described in paper I which construct the Penrose 
pattern. Fig. 3 shows the distribution of the four atoms 
in the Penrose pattern. In this case the edge length 
of the rhombus is 2a/.,/5. The model of the decagonal 
crystal is given by considering the four layers consist- 
ing of each atom. The models are described in the 
five-dimensional space. The four atoms are con- 
tinuous within the pentagonal areas in the internal 
space which are defined by 

V ~ = { ~  h~e2j ,0_<hj<l ,~  A j = v }  (5) 
j = o  j = o  

where ej=(2a/~5)[cos (27rj/5)a3+sin (2~rj/5)a4] 
and v is the index for the atoms which take the values 
one to four. The shape of V~ is shown in Fig. 4(a). 
The atoms are called A, B, C, D in the order of v 
and the layers consisting of them are called A, B, C, 
D layers for convenience. In AI-Mn we stack the 
layers as BABCDC with an interval of c / 6 ~  a/~/5 
along the tenfold axis while in A1-Mn we consider 
BABACDCD stacking with the same interval. The 
first- and second-nearest-neighbor distances of these 
structures are 2a/~/5 and a, provided that c/6 = a/.,/5 
for A1-Mn or c/8 = a/~/5 for A1-Fe. As shown below, 
these models have the superspace groups mentioned 
in the previous section and therefore give the observed 
extinction rules. 

When the atoms A, B, C, D are placed at 
- v ( l l l 1 0 ) / 5  we have the Penrose pattern at x s = 0  
in the external space, where (xlx2x3x4xs) denote coor- 
dinates referred to dj ( j =  1 , 2 , . . . , 5 ) .  In order to 
stack these layers, we take x5 = ( 2 j - 1 ) / 1 2  or ( 2 j -  
1)/16 for the j th  layer in AI-Mn or A1-Fe. The atomic 
coordinates of all the atoms, - v ( l l l l z ) / 5  ( v =  
1 , 2 , . . . , 4 ) ,  are invariant under {C~-1100000} and 

o n  a 3, a 4 a r e  written a s  

\ - s2  c2/ 0 -1 ; 

(a) (b) 

{o-v[00000} since the coordinates transform as x'i = 
~ j F ( R )  u xj. Furthermore, the pentagons are trans- 
formed into themselves because the actions of these 

(6) 

Fig. 3. Distribution of the A, B, C, D atoms in the Penrose pattern Fig. 4. The atoms constructing (a) the Penrose and (b) generalized 
(denoted respectively by a circle, triangle, square and star). Penrose patterns with the tenfold axis. For details see paper I. 
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these mean the 47r/5 rotation normal to the pentagon 
and reflection with respect to the line joining the 
center and a corner of the pentagon. This indicates 
that each atom site has site symmetry D5 and the 
atom is invariant under this group. The models both 
have a tenfold hyperscrew axis {Cl~10000~}, by 
which some atoms are related with the others. 
The hyperscrew axis transforms +v( l l l l z ) /5  into 
+ v ( - 1 - 1 - 1 - 1 z ' ) / 5  ( z '=  z+~) and rotates each 
atom by 7rr/5 in the internal space [(see (4)]. Accord- 
ingly AB atoms with x5 < ½ in both models are trans- 
formed into DC atoms with x5 > ½. As a result only 
three atoms are independent in AI-Mn and four in 
A1-Fe. The symmetry operators { C~-~I0000½}, 
{~rv[00000} generate, together with the primitive trans- 
lations, the superspace group PlOsmc, which includes 
the hyperglide plane {o'a]000~}. In addition A1-Mn 
has an inversion center at the origin because the B 
atoms at x5 = ~2, ~ are transformed into C atoms at 
x5 =-~2,  -~2 and the A atom at 3 into a D atom at 

3 - ,~  by the inversion. The superspace group of A1-Mn 
is therefore PlOs/mmc while that of A1-Fe is PlOsmc. 

4. Polytype and groupoid in quasicrystals 

The models considered above can be regarded as 
examples of polytypes in quasicrystals. These have 
four kinds 9f layers, A, B, C and D. The stacking 
sequences are BABCDC in Al-Mn and BABACDCD 
in A1-Fe. The latter structure arises from the former 
by the addition of the A or D layer every three layers. 
These stacking sequences have rules. The A layer is 
connected to two layers B and C while the B layer 
is connected to three layers, A, C and D. Similarly 
the C layer is joined with A, B and D and the D 
layer with B and C. The characteristic feature is that 
any layer is not stacked on itself. This is similar to 
the situation in the SiC polytype. For example the 
SiC-6H polytype has a stacking of ABCACB layers 
along the hexagonal c axis, where A, B, C represent 
the same SiC layer but with Si/C located in different 
positions. The coordinates of Si are given by (0, 0, z), 
(½,2, z), (2, ½, z) with z= n/6 (n =0,  1 , . . . ,  5) and for 
C z = (n +3) /6  (Verma & Krishna, 1966). Below we 
discuss peculiar properties in such polytypes. 

First we consider the SiC-6H polytype. This is 
decomposable into six substructures such that every 
one of these has the same space group and is related 
to the others by orthogonal transformations. Each 
substructure consists of one of six layers. The space 
group of the substructure is P6mm. B, C, A, C, B 
layers are obtained from the first A layer by {E[½, 2, 
-~}, { El ], ½, ~}, { El0, 0, ½}, { Eli, ~, 2} and { El½, 2, ~}. We 
write these as h 2 , . . . ,  h6 for simplicity; hi represents 
the identity operator. The operators hi (i = 1, 2 , . . . ,  6) 
operate only on the first substructure and superim- 
poses it on the ith substructure, while h i  I operate on 
the ith substructure and superimpose it on the first 

one. Then the set of operators which transforms a 
substructure into another substructure or into itself 
forms a groupoid (Sadanaga & Ohsumi, 1979). The 
groupoid T is given by {hiGhj-~[ hi, hj ~ H}, where G 
is the space group of the substructure and H is the 
set of hi. We call G the kernel and H the hull of the 
groupoid T. The elements in hiGh~ -~ superimpose the 
j th  substructure on the ith one. It should be noted 
that T is not the set of symmetry operators and does 
not form any group. 

Polytypes sometimes show extinction rules which 
are not interpreted by the space group. This is due 
to the existence of particular relations between sub- 
structures owing to elements of the hull. The 6H 
polytype has space group P63rnc and this gives the 
reflection condition l =  2n for hhl. In addition, the 
reflections hkl with h - k = 3 n are absent except when 
l = 6n. This is well known as the structural extinction 
rule (Verma & Krishna, 1966). This can be regarded 
as the extinction rule due to the elements of the hull 
as shown below. We write the structure factor with 
the diffraction vector h of the first substructure as 
F0(h). This is transformed under the orthogonal trans- 
lation {Rlz} into exp (27rih. a-)Fo(R-~h). In the pres- 
ent case, the hull leaves all the diffraction vectors 
invariant. The total structure factor is therefore given 
by 

{(1 + e3) + exp [2"n'i(h- k)/3](ea + es) 

+exp[2'rri(k-h)/3](e2+e4)}Fo(h) (7) 

where e, = exp (Trinl/3). The factor in braces gives 
the extinction rules mentioned above, which include 
the rule due to the space group P63mc. Although the 
translation components of the hull element do not 
effect any limitation from the mathematical structure 
of the groupoid, if they are rational and the hull leaves 
some reflections invariant, we can expect the extinc- 
tion rule inferred from the above argument. In the 
present example, the hull includes only pure transla- 
tions, so that all reflections are invariant under the 
operation of the hull. Accordingly the extinction rules 
for general reflections are obtained. In general the 
hull includes the rotation (or rotatory inversion) 
operator. Then the hull may leave reflections on the 
axis (or plane) invariant. For such reflections we have 

el 
a factor ~i=1 exp (2zri ~ja=, hj,J.ij) instead of the factor 
in braces in (7), where n is the order of the hull, d 
the space dimension and r 0 is the j th  translation 
component of the ith hull element. The factor 
vanishes for some reflections because the translation 
components are rational. In particular if the r U have 
a small common divisor, as in the above case, we can 
easily find the extinction rule due to the elements of 
the hull. The above consideration suggests that some 
polytypes in the quasicrystals have extinction rules 
due to the hull of the groupoid and their symmetry 
is conveniently specified by the superspace groupoid 
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instead of the superspace group. In fact, this is the 
case for A1-Fe. 

In A1-Fe the reflections with h5 = +(2+4n)  disap- 
pear for general reflections. This is considered to be 
due to the existence of the elements of the hull in the 
goupoid. In this case A, B, C, D layers appear twice 
as stated above. One of these is related to the other 
by the operator {EI000~}. Consider two substruc- 
tures, one of which is obtained from the other by the 
operator. Then the structure factor is expressed as 
[ l + e x p  (Trihs/2)]Fo(h) with the structure factor of 
the substructure Fo(h). The factor in braces vanishes 
when the above rule is fulfilled. In the present case, 
the substructure consists of the B, A, C, D atoms at 
xs 16, 3, 9, a-t - 16, the kernel is the superspace group 
PlOmc and the hull consists of {El00000} and 
{EI000~}. If we consider the groupoid, the indepen- 
dent atoms reduce to B and A atoms at xs = ~ and 3. 

5. Modified models 

The models described in § 3 fulfil the symmetry 
required to explain the extinction rules and have 
point groups derived from convergent-beam electron 
diffraction. However, we have to take into account 
the density given by the models in addition. The 
density of the quasicrystal is calculated by applying 
a method developed by Elser (1986). In the present 
case, the decagonal phases have several atoms in the 
unit cell, as described in § 3. Since the method is 
applied only to the simple case where there is one 
atom in the unit cell, we briefly describe the steps of 
the calculation for the present case. We calculate 
first the number density of the vertices in the Pen- 
rose pattern. Consider a simple structure in which 
only one atom is present in the unit cell of the 
four-dimensional decagonal lattice spanned by dj 
(j<-4). We place the atom defined by Vo = 
{Z~=, ajqj[ 0-< aj < 1} at each lattice point, where the 
qj (j = 1, 2, 3, 4) are the internal components of d;. 
As is clear from the definition, Vo is the projection 
of the unit cell into the internal space. When the area 
of Vo is written as 12o and the unit-cell volume of the 
four-dimensional lattice as 12, the number density of 
the vertices Po in the external space is given by Oo/12. 
In the present case, g/0=4~ 3 s i n ( ~ / 5 ) a  z and O is 
given by det M = 4~/5a 4, so that the number density 
is given by 

Po = 'r3 sin (Tr/5)(~/5a2). (8) 

As is discussed by Elser (1986), the number density 
p is proportional to the area of atoms spreading in 
the internal space. Therefore we find p, = po0,,/12o. 
(v = 1, 2, 3, 4) for the density of A, B, C, D atoms in 
the Penrose pattern, where 12~ (v = 1, 2, 3, 4) are the 
areas of V~ and are given by g-21 = g24 = 2T sin (Tr/5)a 2, 

~'~2 = ~"~3 = 7"201 • From ~ p~, we have 

p = r 2 sin (Tr/5)a 2 = 1"5388/a 2 (9) 

for the Penrose pattern. It is remarkable that the figure 
of 1.5388 is the same as that of the three-dimensional 
Penrose pattern, where p = r 2 sin ( ' n ' / 5 ) / a  3 = 

1.5388/a 3 (Elser, 1986). 
We turn to the calculation of the number 

densities of the models described above. In order to 
compare these with that of the three-dimensional 
Penrose pattern, we approximate c with 6a/~/5 
for A1-Mn and with 8a/.,/5 for AI-Fe. Then p = 
(5T+2) sin ('rr/5)/(6a 3) =0"9885/a 3 for A1-Mn and 
(3T+ 1) sin ('n'/5)/(4a 3) = 0.8602/a 3 for AI-Fe. 
These are much smaller than that for the three- 
dimensional Penrose pattern. When we place Mn at 
every vertex of the three-dimensional Penrose pattern 
we obtain a diffraction pattern similar to that for 
icosahedral A1-Mn (Duneau & Katz, 1985) and this 
model gives a reasonable value for the Mn contribu- 
tion in the density. Therefore it is reasonable to 
assume that Mn atoms take the vertices described 
above in the decagonal phases. Since the chemical 
composition of the decagonal AI-Mn is nearly equal 
to that of the icosahedral A1-Mn (Suzuki, Ichihara, 
Kimura & Takeuchi, 1986) the density due to Mn 
atoms should be almost the same as that of the 
icosahedral phase. This leads to the requirement that 
the number density is almost the same as that of the 
three-dimensional Penrose pattern. The models con- 
sidered above give unacceptably small densities for 
both cases. Therefore denser structures giving the 
observed extinction rules should be considered. 
Although AI atoms must also be taken into account 
in a real model, vertex models with reasonable num- 
ber densities are treated as the zeroth approximation 
in this paper. 

Such models are obtained in the BABCDC 
sequence of A1-Mn and the BABACDCD sequence 
of AI-Fe by replacing A and D with A+ C and D +  B, 
where A+  C ( D +  B) means the layer consisting of 
the A and C (D and B) atoms (see Fig. 3). These 
give nearly the same densities of 1.4036/a 3 and 
1.4826/a 3 for A1-Mn and A1-Fe as that of the three- 
dimensional Penrose pattern. These structures also 
have the same superspace group and the same super- 
space groupoid as those of the original ones, so that 
the same extinction rules are obtained. The nearest- 
neighbor distance reduces from 2a/.,/5 in the models 
discussed in § 3 to a/T because A and C or B and 
D atoms are at the same height along the c axis. This 
is acceptable in crystal chemistry terms as the inter- 
Mn or inter-Fe distance. In the structure analysis of 
the decagonal phases, such models are considered to 
be better than the models described in § 3 as starting 
models. The coordinates of the independent atoms 
in the five-dimensional unit cell are given in Table 1. 
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Table 1. The atom coordinates of the independent 
atoms in the modified models for decagonal A1-Mn 

and AI-Fe 

I n  t h e  f i r s t  c o l u m n  A a n d  B r e p r e s e n t  t h e  k i n d  o f  p e n t a g o n a l  a t o m s  

w h i c h  a r e  s h o w n  i n  F i g .  4.  T h e  c o o r d i n a t e s  s p e c i f y  t h e  c e n t e r  o f  

t h e  a t o m s .  

AI-Mn x ~  x 2 x 3 x 4 x 5 

A - ~  ' - ~  ' - - 5  - - 5  

c -~ -~ -~- -~ 

A 1 -  F e  x~ x2 x3 x4 x5 

1 1 __~  I 
A - 5  - 5  - ~  ~6 
c -~ -~ -~ -~ ?~ 

6. S t r u c t u r e  f a c t o r s  

The structure factor of the Penrose pattern is derived 
in paper I. Similar considerations allow a derivation 
of the structure-factor formula for the decagonal 
quasicrystal models described in the previous two 
sections. In the present case we take into account the 
scattering factor of atoms and the temperature factor. 
In the modulated and /or  quasicrystal structure, the 
additional Debye-Waller factor due to the phason 
should be taken into account (Yamamoto, Nakazawa, 
Kitamura & Morimoto, 1984; Kalugin, Kitayev & 
Levi~v,1985;  Yamamoto & Hiraga, 1988). This is, 
however, "neglected in the present calculation. Then 
the structure'factor is expressed as 

Fh = E ~- f " ( h e )  e x p  { - B ~ ( h e )  2 
/ x  { g [ ~ ' }  

5 

+27ri E hi[(Rx"),+'r,]}F"(R-lh), (10) 
i = 1  

where/z indicates the index of the independent atoms, 
{RIr} represents the symmetry operator of the super- 
space group (and the element of the hull mentioned 
in the previous section for the case of AI-Fe), F ( h  e) 
is the atomic scattering factor of the/xth  atom at the 
external component h e of the diffraction vector h, B ~' 
is the isotropic temperature factor and F ' ( h )  is the 
Fourier integral of the pentagonal atom spreading in 
the internal space. An explicit expression for P ' ( h )  
is given in paper I. The index/z runs over independent 
atoms and the summation with respect to {R[~} is 
taken over the identity operator {El00000} and all the 
symmetry operators which generate new atoms from 
the independent ones. In AI-Fe the operators com- 
bined with these and the element of the hull are also 
included in the summation. These are {El00000}, 
{ C10]000~} for AI-Mn and { El0000¼}, { C,o]00003} are 
added for AI-Fe. Noting that (Rx~'), is given by 
Y~_~ F(R)ux ~" we obtain the extinction rules due to 
the tenfold hyperscrew axis and hyperglide plane. 

From the hyperscrew axis we have the reflection con- 
dition h s = 2 n  for 0000h5 and from the hyperglide 
plane, h s = 2 n  for hlh2h3hah 5 with h i+h2  = h 3 = 2 h  4. 
[The rotation matrix of the hyperglide plane F(Crd) 
is given by F(o'v)F(C-~o~).] The latter includes the 
former. 

The calculated diffraction patterns for the modified 
models of A1-Mn and A1-Fe are shown in Fig. 5. 
Here we have used the atomic scattering factor of 
Mn and an isotrpic temperature factor of 1 ]k 2 for all 
atoms in both cases because the difference of the 
scattering factor in Mn and Fe is negligible in the 
present rough models. It is clear that the observed 
extinction rules are reproduced and the diffraction 
in.tensity explains the characteristic features of that 
in A1-Mn and A1-Fe though quantitative comparison 
is meaningless because the models do not take into 
account the AI atoms. 

7. D i s c u s s i o n  

As shown in paper I another generalized Penrose 
pattern with a tenfold axis gives a diffraction pattern 
similar to that of the Penrose pattern. This has five 
kinds of layers, A', B', C', D', E '  which come from 
the five atoms shown in Fig. 4(b). The C'  atom has 
tenfold symmetry while the remaining ones have 
fivefold symmetry. Taking into account this and the 
superspace-group symmetry, we can hardly consider 
the model of A1-Mn with these five layers because it 
consists of six layers as stated previously. Therefore 
we consider a model with three layers, B', C', D',  
which are stacked as B'C'B'D'C'D'  along the tenfold 
axis. This has the superspace group PlOs/mmc as in 
the previous model. The model by no means gives a 
generalized Penrose pattern when it is projected along 
the tenfold axis owing to the lack of A' and E '  layers. 
Its diffraction pattern is, however, not much different 
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Fig. 5. Calculated diffraction patterns for the modified AI-Mn 
(upper) and AI-Fe (lower) models• (a) corresponds to Fig. 1 in 
Bendersky (1986) or Fig. l(a) of the present paper; (b) and (c) 
correspond to Figs. 2(a) and (b). 
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from that of the generalized Penrose pattern because 
the number density of these atoms are small compared 
with the others. Similarly we can consider 
B'C'B'C'D'C'D'C' stacking for the model of A1-Fe. 
These models again give a density much smaller than 
that of the three-dimensional Penrose pattern: p = 
1.0677/a 3 for A1-Mn and 1.1488/a 3 for AI-Fe 
because .O~ for B' and D'  is (7r+  1)sin (rr/5)a2/2 
and that for C'  is ( 4 r + 3 ) s i n  (rr/5)a 2. [For A' and 
E '  we have .O, = r sin (p/5)a2/2. This means that two 
generalized Penrose patterns with tenfold axis have 
the same point density. Similar considerations show 
that all the generalized Penrose patterns have the 
same point density.] It seems difficult to obtain any 
other stacking sequence giving a reasonable density 
from these layers. The above consideration suggests 
that the decagonal phases of AI-Mn and A1-Fe con- 
sist of A, B, C, D layers. It should be noted that if 
the decagonal phases consist of A, B, C, D or B', C', 
D'  layers, the Mackay icosahedron does not appear 
because this requires a 12-fold vertex. The Mackay 
icosahedron consisting of 12 Mn and 42 AI is an 
important building unit of icosahedral AI-Mn (Elser 
& Henley, 1985; Guyot & Audier, 1985; Yamamoto 
& Hiraga, 1988). The B'D'D' stacking includes ten- 
fold vertices, which provide ten of 12 Mn positions 
in the Mackay icosahedron. If the Mackay icosahe- 
dron is also important in the decagonal phase as a 
building unit, we have to consider a more complicated 
model different from the generalized Penrose pattern. 

8. Concluding remarks 

It has been pointed out that extinction rules are 
observed in the decagonal A1-Mn and A1-Fe quasi- 
crystals. For AI-Mn these are explained by the super- 
space group P105/rnmc. On the other hand, the super- 
space group of A1-Fe is PlOsrnc but this group 
explains only part of the rules. An extra extinction 
rule is due to the groupoid symmetry. Symmetry 
considerations are important in constructing models 
for these quasicrystals and are efficient in calculations 
of the structure factor. Symmetry operations reduce 
the number of atoms to be considered. The structure 

is determined by fixing parameters of independent 
atoms owing to the symmetry operators. Based on 
symmetry considerations and structure-factor calcu- 
lations some structure models have been proposed. 
The models consist of four kinds of layers which are 
derived from the Penrose pattern. These give reason- 
able densities and diffraction patterns characteristic 
of the decagonal phases. The polytypism in the quasi- 
crystals was discussed with respect to the groupoid 
symmetry and the structural extinction rules. It was 
shown that the superspace groupoid plays an impor- 
tant role in describing some quasicrystal symmetry. 
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